2nd. Asia Automobile Institute Summit 25-26 November 2013, Bali

Electrically Propelled Vehicles

Agus Pruwadi
Bandung Institute of Technology

Hidenori Tomioka
FC-EV Research Div.
Japan Automobile Research Institute

Today's Agenda

- 1. Prospect for the International Standardization of EV related items: JARI (20 min)
- 2. The situation for domestic standardization on EV related subject in each countries (10-20 min. each)
- 3. Discussion and further action (45 min)
 - The situation for EV in each counties
 - Itemization for the topics for this session to discuss
 - Issues on introducing international standards into domestic standards
 - Further actions.
- 4. Wrap-up and next steps (5 min)

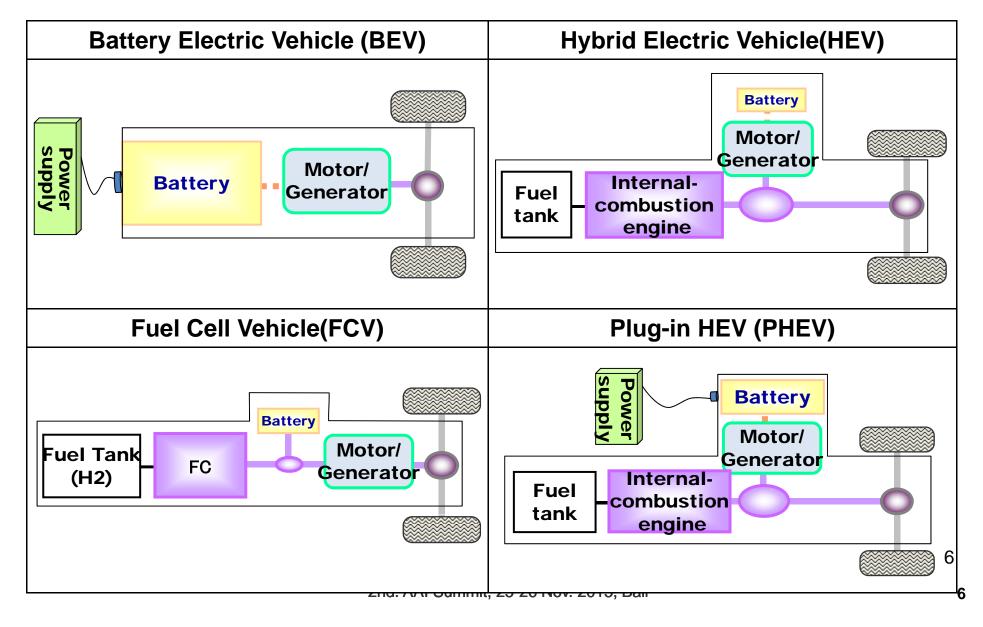
2nd. Asia Automobile Institute Summit 25-26 November 2013, Bali

Prospect for the International Standardization of EV related items

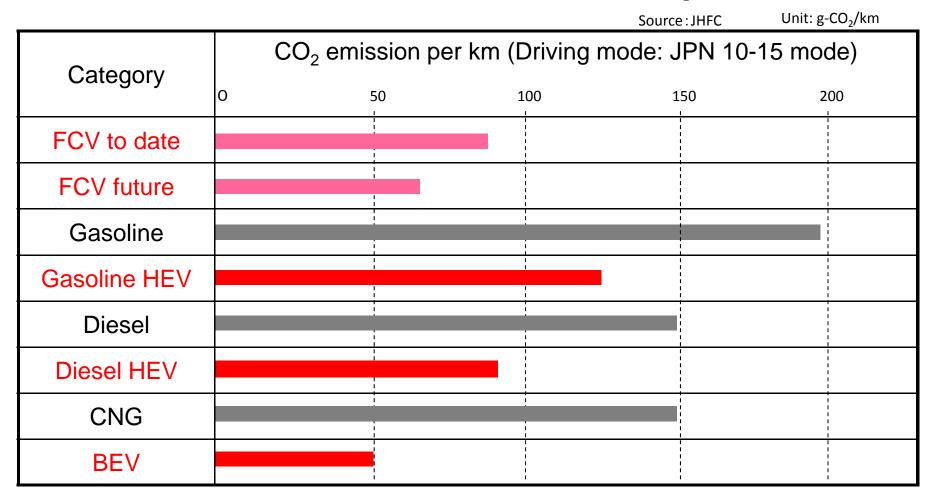
Hidenori Tomioka
FC-EV Research Div.
Japan Automobile Research Institute

Contents

- 1. Prospect for the market and the popularization of EVs
- 2. International standardization activities in the EV sector
- 3. Standardization information exchange on EV applications among AAIS members

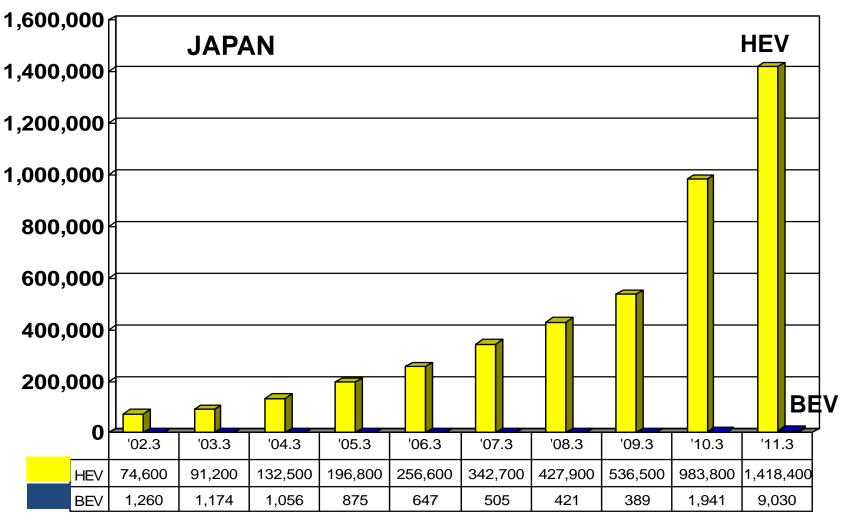

Contents

1. Prospect for the market and the popularization of EVs


Basic structures of electrically propelled vehicles' family

CO₂-reduction utilizing electrically propelled vehicles

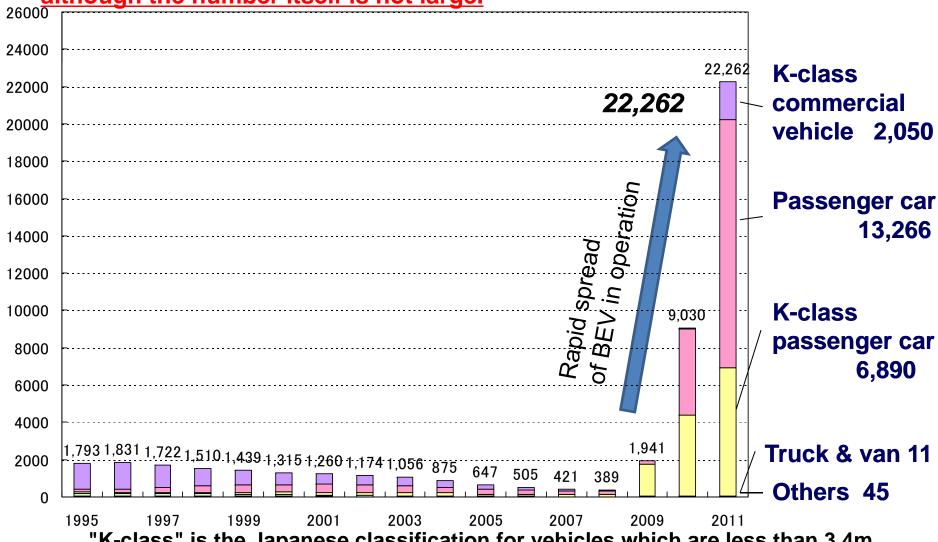
(Well to Wheel CO₂ emission)



FCV現状:「水素ステーション」「FCV」データはJHFC実証結果トップ値、その他データは文献トップ値により算出 FCV将来:FCVの将来FCシステム効率60%と文献トップ値により算出 電力構成:日本の平均電源構成

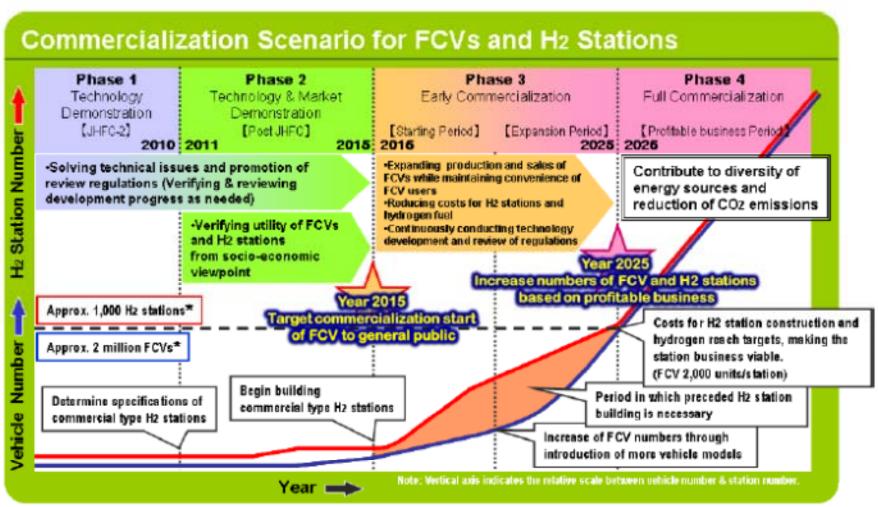
Broad use of EV is effective for CO₂-reduction

The number of BEV-HEV in operation in Japan


<u>Development of international standardization for EV and batteries</u> is urgent to match the rapid spread of Electric Vehicles.

The number of BEV in operation in Japan

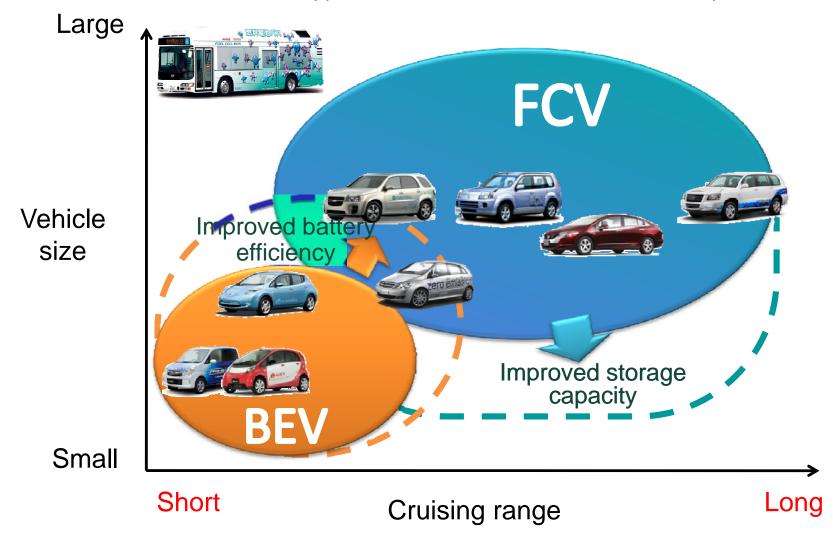
Number of BEV operation has been increased rapidly in these years although the number itself is not large.



"K-class" is the Japanese classification for vehicles which are less than 3.4m long and with an engine displacement of 660cc or less.

Commercialization Scenario for FCVs and H₂ Stations

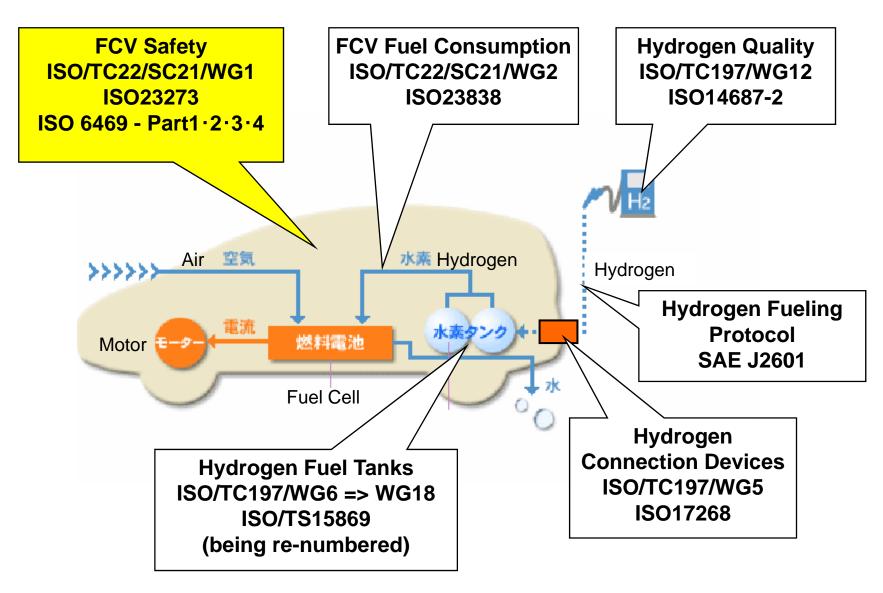
2010



Precondition: Benefit for FCV users (price/convenience etc.) are secured, and FCVs are widely and smoothly deployed.

Segmentation of FCV and BEV

- FCV can replace existing internal combustion engine vehicle in aspects of vehicle size and Cruising range.
- For small and short-distance applications, BEV and FCV can coexist to spread more widely.


Contents

2. International standardization activities in the EV sector

Schematics of Standardization for FCV

EV Safety: ISO6469-Part1 · 2 · 3 · 4 ISO23273

FCV safety standards are changing the system.

-- ISO6469 Electrically propelled road vehicles - Safety specifications (Revision)

Part 1: On-board rechargeable energy storage system - RESS

Part 2: Vehicle operational safety means and protection

Part 3: Protection of persons against electric shock

Part 4: Post crash electrical safety requirements

"Electrically propelled road vehicles" includes BEV, HEV and FCV.

ISO23273: Fuel cell road vehicles -- Safety specifications -- Protection against hydrogen hazards for vehicles fuelled with compressed hydrogen

Standards and regulations of traction Li-ion © batteries

	Standard	Regulation
Performance test		
Reliability test	ISO 12405-1 IEC 62660-1 ISO 12405-2 IEC 62660-2	
Abuse test		
Safety requirement	ISO 12405-3 IEC 62660-3	ECE regulation
Dimension	IEC/ISO PAS 16898	

: For battery system or pack

: For cell

The basic stance on the standardization of traction Li-ion batteries

- Start with the standardization for the test procedures, then make the standards those include the pass/fail criteria.
- Input the appropriate contents in consideration of current and future battery technology.
- Promote the harmonization between relevant standards and regulations.

Structure of International Standard with regard to Charging System 1

		System	Interface
Conductiv e Charging	General	IEC 61851-1 C.Bleijs (FR) General Requirements	
	Vehicle	IEC 61851-21 C.Bleijs (FR) Electric Vehicle	IEC 62196-1 G.Nieminski (US) General Requirements
		ISO PAS T.Miki (JP) Electric Vehicle	
	AC Charging	IEC 61851-22 C.Bleijs (FR) AC Charge Station	IEC 62196-2 T.Miki (JP) AC Charge Interface
	DC Charging	IEC 61851-23 S.Roy (JP) DC Charge Station	IEC 62196-3 T.Rose (US)
		IEC 61851-24 S.Roy (JP) DC Charge Protocol	DC Charge Coupler
Inductive Charging	General	IEC 61980-1 E.Stolz (CH) General Requirements	

Structure of International Standard with regard to Charging System 2

	System
Vehicle to Grid Communication Interface (V2G CI) C.Bleijs (FR) C.Saalfeld (DE)	ISO 15118-1 General information and use-case definition ISO 15118-2 Technical protocol description and Open Systems Interconnections (OSI) layer requirements ISO 15118-3
	Physical and data link layer requirements

DC charging system/ interface standardization

DC charging system Japan (CHAdeMO) / China Germany / US **Dedicated charging system PWM** control pilot system **Vehicle Coupler** Japan (CHAdeMO) China Germany US •Pure DC Pure DC Low power: AC/DC common ·Low power: AC/DC common High power: AC/DC Combo · High power: AC/DC Combo Additional DC Additional DC terminals terminals **DC Charge** Control Protocol Japan (CHAdeMO) / China Germany / US Germany / US Alternative CAN **PLC** In-Band Communication

Aspect of standardization for this field

 IEC has not reached the single specification for both AC and DC couplers.

- There are many stakeholders in this field, unlike other technical fields.
 - Interests among the automotive industry, electric power suppliers.
 - Differences in the power situation in national and regional areas

To reach consensus

It is essential to build a relationship of mutual trust among stakeholders

Contents

3. Standardization information exchange on EV applications among AAIS members

Standardization Information Exchange

Background

At the #2 summit, we're anticipating these outputs:

- ✓ Sharing the current status and issues related standardization of "Safety and performance of EV and battery" and "Charging" among attending countries.
- ✓ Agreeing to set the summits after #3 to be the regular area of exchange of information to solve the facing issues.

Standardization Information Exchange

♦ Concerns

- ✓ How to introduce those international standards into local codes and standards.
- ✓ Needs to built up the common interpretation of those languages in international standards.

Standardization Information Exchange

♦ Outcome

We're expecting these fruits among the AAIS members:

- ✓ Harmonization of testing protocol in the future
- Enhancement of "Asian Voices" at the international standardization in this EV field
 - -- Contact Persons?
 - -- The next topic(s) at the #3 AAIS?

Thank you for your attention.

If you have any comments and questions,

please feel free to contact me: Hidenori TOMIOKA.

mailto: htomioka@jari.or.jp

Tel: +81-3-5733-7927